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Heat exchange in very rarefied gases has 

(Received August 

number of papers. III [ 1,2 1 and a number 
termlnlng the equilibrium temperature of 

17, 1961) 

been treated in a considerable 
of others, the question of de- 
a body (a flat plate or a 

cylinder) moving with constant velocity is considered. The body is 
assumed to be a perfect conductor and the total heat flow across its 
surface is calculated. Then, by virtue of the assumption of perfect con- 
ductivity. we avoid the unresolved qaestions connected with the unequal 
heating of surface elements vhich are differently oriented in relation 

to the velocity of motion. Moreover, as a result of it being a steady 
problem, we leave aside consideration of the process of establishing the 
temperature equilibrium, which is well known to be important at great 

heights. 

In the present paper, by making use of the expressions obtained in 

[ 3 1 for the heat transfer, we determine the temperature of a thin body 

which has small unsteady motions, * in addition to its forward velocity, 
both in the case of purely convective heat exchange and also in the case 
of radiative heat transfer. The temperature Is determined as a function 

of time. local angle of attack, velocity, the characteristics of the 

l A similar study can be carried out for the determination of the 
temperature of the surface of thick convex bodies in steady motion, 
but instead of Expression (1.1) of the present paper we need to use 
the corresponding expression for the heat transfer derived, for 

example, in [ 1.2 I. 
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surface and the thermodynamic parameters of the medium at the height 

under consideration. We notice the important dependence of the time for 
establishing temperature equilibrium upon the height. For the assumed 
model of the interaction of the gas with the surface we find the tempe- 
rature of the gas in contact with the surface and the temperature of the 
surface, and indicate the dependence of the temperature discontinuity 
between the gas and the wall upon the assumed model of interaction. We 
point out a certain similarity between the gasdynamic stagnation tempe- 
rature and the equilibrium temperature of a plate in free-molecular flow. 
This fact, together with the similarity established in [3 1 between the 
expression for the excess pressure and the “piston theory” formula used 
in gasdynamics, may provide a certain basis for the application of the 
expressions obtained here to the temperature in the field of the 
mechanics of a continuous medium. 

1. Let a body be moving through a highly rarefied gas with a constant 
velocity W relative to a certain reference system fixed in space (the 
unperturbed velocity), and let it perform small unsteady motions rela- 
tive to this unperturbed state. Then, according to the kinetic model of 
a gas assumed in [3 1, and under the limitations therein prescribed on 
the shape and motion of the body, we know that the heat transfer in time 
dt to the surface element ds is determined by the following expression: 

All tensor quantities are considered in coordinates related to the 
unperturbed constant velocity in the conventional manner. The following 
notation has been used: p,, T, are the density and temperature of the 
incident medium, co is the most likely velocity of random motion of the 
molecules, lu.f, , w.jt are covariant derivatives of the components of the 
displacement vector with respect to the coordinates and time, W.yS = - 1, 
R is the gas constant, gap is the fundamental metric tensor of the co- 
ordinates under consideration, (I is the accommodation coefficient, 6 is 
the coefficient of diffuse reflection, and T, is the temperature of the 
surface. 

In determining the heating of the body let us take the following 
thermomechanical model. We shall assume that the layer of the rigid body 
next to ds (henceforth this layer will be called the surface of the 
element or body) has a thickness h sufficiently small so that we can 
assume that the mass included in the volume h ds has a uniform temperature 



T,. The inner surface of the Iayer will moreover be assumed to be adi- 

abatically insulated. Then into the volume h ds under consideration 
there flows through ds a quantity of heat AQ on account of the impacts 
with the gas molecules. Through the side faces there flows a quantity 

AQ, on account of the heat conduction from the parts of the body 
immediately surrounding h ds. Throagh da there is emitted a quantity of 
heat AQ~ on account of radiation (it is assumed that the surface 
radiates as a perfect black body according to the Stefan-Baltzmann la@. 
Accordingly, the gnantity of heat AQg used up in the heating of the sw- 
face element is determined from the condition of heat balance bs the 

folIowing expression: 

A Qs = cpw hds dT,,_,, AC% = AQ 

Here c and p, are the specific heat capacity 
body, respectively. 

Let us express AQI and. AQ~ by means of the 
and the body. It is easy to see that 

AQI - AQz (1.2) 

and the density of the 

parameters of the medium 

where k is the coefficient of thermal conduotivitJr of the rigid body, 

T aS 
v/a/J g 

is the Laplace operator on the function T1, in the coordinates 
under consideration 

AQz = 6TW” ds dt (1.4) 

and CT. is the Stefan-Boltzaann constant*. 

Substituting (l.l), (1.3) and (1.4) into (1.2), we obtain, generally 
speaking, a nonlinear partial differential equation for the determina- 
tion of the temperature TV of the surface as a function of the time t, 

the coordinates zi, the properties of the surface, the characteristics 

of the motion of the body, and the thermodynamic parametera of the 
gaseous medium at the height under aonsideration: 

Tlu/t = 
kT ap WI4 g 

CPUI 

* In the ease when the body is not perfectly black, we have to attach 
to the right-hand side of the equation a factor characterizing the 
degree of blaokness. 
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Questions related to the heat conduction along the surface will not 
be considered in this gaper; as a result, the first term on the right- 
hand side of Equation (1.5) is neglected. Accordingly, we exclude from 
consideration the thermal interaction of the parts of the body with each 
other. Then Equation (1.5) is transformed into an ordinary differential 
equation with respect to the unknown function TV,. where the time t is 
the independent variable, and the coordinates xi are parameters. The 
displacement vector u(x’, t), characterizing the unsteady motion of the 
surface, is assumed to be a given function of the coordinates and time. 
Equation (1.5) can be put in the form 

dT 
- = B1 - BPT + B8 + B4 - BsT4 
dt 

(1.6) 

Here we have introduced the following notation: 

B4=aljf& +“+1.25-(1-a) 
t c 

If+ 52 , R,zGTm3 
P&h 

Let us examine in some very simple particular problems the character- 
istic singularities of the phenomena which may arise in the assumed 
models of gas and body (we have in mind the kinetic model of a gas and 
the thermonechanical model of the body). 

2. Let us consider the case of purely convective heat transfer (radi- 
ation absent). Equation (1.6) becomes 1 inear 

dT 
-=Bl- 
tit &~+-&+-~4 

and its general solution is given by the formula 

(2.f) 

Tiexp(-5B,dt)[T,+S(BI+B.+B4~erp(5B?d2)dt (Tm=$$] (2.2) 

0 0 0 

where Too 

surface. 
is the dimensionless initial temperature of the element of the 

Let the body perform only the unperturbed motf;on, then the Bi do not 
depend on time, and the general solution in this C&Se with Bgf 0 has the 



1690 N. T. Pashchenio 

form* 

T=Tmexp(-&t)+jl-exp(-&t)] (B1+i:+B4) 

or, substituting for the Bi their expressions, introducing the local 
angle of attack fl and replacing S by its value 

we obtain 

T=T,exp[--nlat(l+ I/un!2:Mp)lf$(i+(r -u)(?+?!+ 

t1- exp [ - a@ fl + v’xx I2W3fI) (2.3) 

Hence, when t + OQ we find an asymptotically sttsined dimensionless 
euuilibrium temperature 

On a plate, moving with zero angle of attack, with a = 1 the equi- 
librinm temperature becomes 

According to the restrictions postulated in [ 3 1 on the shape and 
motion of the body (Sn << l), the singularities in Expressions (2.3). 
(2.4) occur outside the limits of applicability of the expression for 
the heat transfer in the form (1.1) (the appearance of the singularity 
is a result of introducing the linearization in [3 I)‘. The presence of 
the singularity may serve as a certain indication of the limits of 
applicable values of Mj? . 

Let us consider the steady temperature as a function of the local 
angle of attack. It is easy to see that the temperature of the parts of 
the surface turned towards the stream are higher than the temperature 

l The case B2 = 0, according to the meaning of the quantities determin- 
ing B2 (1.7), can occur either when Q = 0 or when t = 0. The first 
case corresponds to heat transfer being independent of the tempera- 
ture of the surface, and it leads, as is apparent from (2.21, to a 
linear increase with time of the temperature of the surface. In the 
case E = 0 the heat transfer to the surface is zero and for the whole 

duration of the motion the temperature remains equal to its initial 
value. 
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attained on the flat plate. Let us find the difference in the equilibrium 

temperatures hTe for two elements of the surface inclined at angles B 
and - @ with respect to the direction of the velocity of the incident 
stream: 

(2.6) 

Calculations carried out for a number of values of M and p show that 
the difference of temperature at the points of the surface under con- 
sideration consists, as a rule, of a small percentage of the correspond- 
ing temperature of the flat plate at zero angle of attack, at least in 
the region of permissible values of M@ (obviously, with increase in M 
the permissible values of the angle of attack p diminish). However, it 
can be shown that allowance for this difference of temperature is im- 

portant in the determination of thermal stresses arising in structures. 

In [1,2 1 only the equilibrium temperature is determined, which does 
not depend on the height, as is clear from (2.4). It must be remarked, 
however, as calculations from Formula (3) show, that at the greatest 
heights (= 100 km and higher) the process of establishing the equilibrium 
temperature occurs very slowly. This can be seen in the table and Fig.1, 
where the broken curves show the variation of the temperature T1 of the 
body without allowance for radiation, and the full curves show the tenpe- 
rature T2 of the body with allowance for radiation. So, for example, in 
the motion of a body at zero angle of attack at heights of 150-200 km 
with dimensionless velocity S= 20 for a period of 2 l/2 hours the 
temperature of the surface remains practically equal to the initial 
temperature. Notwithstanding the fact that in the absence of radiation 
the equilibrium temperature does not depend on height. the time taken to 
establish this temperature is considerably influenced by the height. 

Let us consider the expression for the equilibrium temperature set up 
on a flat plate (2.5). From boundary-layer theory it is known [ 4 1 that 
in the flow of a steady stream of compressible gas with Prandtl number 
equal to unity past a plate, with the so-called “adiabatic wall” as the 
temperature boundary condition (it is assumed that the temperature of 
the gas at the surface of the plate is equal to the temperature of the 
plate), there exists an integral of the equation of energy, the Stodola- 
Crocco integral, which may be written for dimensionless temperatures in 
the form 

T,* = 1 + ; (x - 1) M2 (2.7) 

It is not difficult to show the similarity of the equilibrium tempe- 
rature (2.5) obtained in the case under consideration with the Stodola- 
Crocco integral. Comparing (2.5) and (2.7). we can see that when a = 1 
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these expressions differ only by the factor involving K, and they CO- 

incide when K = 2. ahen K < 2 the equilibrium temperature (2.6)) es- 
tablished on the flat plate with free-molecular flow, is higher than the 
corresponding stagnation temperature (2.7) of continuous flow, which is 
found in accordance with the results of f2 1, but not higher than the 
kinetic temperature* T k = 1 + KM~/~ of the free-molecular flow with mass 
velocity Y. 

In the general case a f 0 the equilibrium temperature (2.4) 
established on the surface depends upon the magnitude of a; a = 0 is a 
special case, when the body receives heat but does not give it up, as a 
result of which the temperature increases without limit and, as is 
evident from (2.2), there does not exist a steady bounded solution of 

the problem. 

The boundary-layer condition on the surface teaperature (equality of 
the temperature of the surface and of the gas in contact with the sur- 
face) is not the only one applicable to the St8tSd problem, and it can- 
not always apply. Thus, the assumed model of interaction of the mole- 
cules of the gas with the surface already determines the value of the 
temperature of the gas in contact with the wall, which is different from 
the equilibrium temperature T, established on the surface itself (2.4). 
The dimensionless temperature To of the gas in contact with the surface 
of the body, obtained by mesns of the boundary value of the distribution 

function (13 3 I Formula (1.111, is given bx 

In the case of the commonly accepted value of the accommodation.co- 
efficient a = 1, Expression (2.7) has the form 

T” = eT + q[p + y) [I + .\I.; wp) j -F (2.0) 

Accordingly. the model is such that the temperature of the g8s in 
contact with the wall depends upon the kinetic temperature of the gas, 

* The kinetic temperature of a gas is found 15 1 

t RTB = ~~~~i~d’ 1 [He 

(Q is the region of integration. 0 < 1 e ( < 4 in the given ease 

is the Maxwell distribution with mass velocity V. 

from the relation 

f 
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the temperature of the wall, its shape and the nature of the interaction 
of the molecules with the surface. 

Let us consider a particular case of the interaction’of the molecules 
with the surface. With pure specular reflection (E = 0) the temperature 
of the gas in contact with the wall does not depend on the temperature 
of the wall 

and in the case of a flat plate is equal to the kinetic temperature of 
the gas. In the case of pure diffusive reflection (E = 1) 

T~=T+~[jl+~x~‘)jl+I/~MP)- T] (2.10) 

and for a flat plate, moving at zero angle of attack, we obtain (with 
a = 1) 

(2.11) 

From (3.11) we can see that To < T if the surface possesses a tempe- 
ratare higher than the kinetic temperature of the gas, and vice versa. 
Accordingly, generally speaking, at the contact surface of the gas with 
the surface (within the assumptions of the accepted modgl of the gas, 
the surface and their interaction) there exists a discontinnity of 
temperature, and only in the special case when the flat plate warms up 
to the kinetic temperature of the stream does the temperature of the gas 
in contact with the flat plate equal the temperature of the plate itself. 
Moreover, this temperature is different from the eaailibrium temperature, 
set up in the plate as a result of only convective heat transfer. 

Expression (2.8) for the temperature of the gas in contact with the 
wall can be used as a boundary condition in the solution of temperature 
problems in the gas. 

3. Let us consider heat transfer with radiation. In the case of un- 
perturbed motion of the surface the Bi do not vary with time, the vari- 
ables in the equation (1.6) are separated, and it8 solution can be ob- 
tained in puadratnres 

z 

’ = i 
dT 

B1-BB,T+B,+13,-B5Ta 
?‘a? 

Calculations which have been carried out show (Fig. i and the table) 
that at the greatest heights (150 km and higher) radiation plays a 



1694 N. T. Pas&hen&o 

fundamental Part in heat transfer from the surface to the medium. If 

take for the initial temperature the temperature of the surrounding 
we 

Dependence of dimensionless temperature 

on tine with a = 1, E = 0, S = 20, 

c = 0.12 cal.cm P’-’ deg-‘, 

PlP = 1.9 g cu?. h = 0.5 cm. 

H=lOO km 
p,=o.829.i0-9 i3 cd3 

Tw=237"K 

H--150 km _3 

pco=0.34.10-" g cm 
Tm=4WK 

I 

- 

1.28 
1.6 

ffQ6 
21396 
2.792 
201 
1.002 
1.004 
1.006 

1.008 
1.00995 
1.012 
1.014 
1.0246 
1.016 
1.018 
1.02 
1.022 
1.024 
1.026 
201 
1.00091 
1.002 
1.0028 
1.0038 
1.0048 
1.0058 
1.0068 
1.0076 
1.0086 
1.0096 
1.0106 
1.0116 
1.0124 
1.0134 
1.0144 

201 

- 

- 

i 

I 

1.889 
0.87623 
0.80394 
0.75319 
0.71447 
0.68343 
0.65773 
0.6359 
0.61703 

~.~~~~ 
0:57269 
0.56058 
0.55007 
0.54022 

0.328 

z%% 
0146875 
0.4464 
0.42303 
0.41252 
0.39915 
0.38745 
0.35997 
0.33954 

0.121 

medium, then, as is evfdent from Fig. 1, the equilibrium temperature in 
the presence of radiation heat transfer, begfnning at a height of 150 
km* is lower than the temperature of the surrounding mediunt and much 
lower than the equilibrium temperature found in a calculation taking 
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account only 

And here, 

of 

as 

purely convective heat transfer. 

alS0 in th8 DreC8dfng ease (SeCtiOn 21, it iS necessarY 

to pay attention to the duration of the process of establishing the 

equilibrium temperature. The vari- 

ation of the temperature with time 

for different heights was obtained 

by nnnerical integration of Equa- 

tion (1.6). th8 thermodynamic 

characteristics of the medium at 

different heights being obtained 

from f6,7 I. Xn the calculations the 
surface was taken to have the follow- 

ing characterfstics: t = 1, Q = 1, 

c = 0.12 cal.g-' cm_3 deg-', p, = 

7.9 g cn~-~, h = 0.5 cm. 

1. Th8 r8SUlt8 obtainad in this 

paper, generally speaking, are valid 

only for great heights in the region 

of free-molecular flow. 1R8 have al- 

ready noticed the analogy established 

in /3 I between the pressure in free- 

molecular flow and the flow of an 

Fig. 2. 

ideal contpressible fluid. Comparison of Forlaulas (2.7) and (2.5) of the 

present paper allows us to perceive a similar analogs with regard to 

temperatures. Since in th8 mechanics of a continuous m8dium we have still 

not diSCOVered a simpl8 relation between 

the teaperature of the surface or the 

heat intake and the local angle of sttaak 

4 in unsteadr motion, there is some 

fnterest, in view of the specified 

analogy, in assaaing lap to the present 

tim8, we have failed to obtain the 
u 

40 rigorously proved dependence of tempera- 

ture and heat intake on the local angle 
Fig. 3, of attack) as a hypothesis for the gas- 

dynamic calculations th8 8Xpr8SSion ob- 

tained in form (1.1) for the heat intake and all the conseguences aris- 

ing therefrom. 

Computations were carried out for the d8terSifnatiOn of temperature 

at heights 20-50 km, both in the case of purely conductive heat trans- 

fer, and also for heat transfer with radiation when S= 5. The results 

show that with decrease of height the part played by radiation in the 
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overall heat balance decreases (we must not, however, forget that in 
this problem we have considered only the radiation of the surface itself, 
and have not taken into account the influence of radiation of the gas). 
In Figs. 2 and 3 are shown the variation with time of the temperature of 
the bodY Tl without allowing for radiation. and Tz with allowance for 
radiation. Figure 2 shows the process of establishing the equilibrium 
temperature at a height of 20 km, and Fig. 3 at a height of 50 km. Tel 
and Te2 denote the equilibrium temperatures in the absence and presence 
of radiation, respectively. From the graphs it is clear that as the 

height decreases the process of establishing the equilibrium temperature 
proceeds significantly faster. In the graphs we can also see the in- 
fluence of the angle of attack oa the process of establishing the equi- 
librium temperature. 
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